Transcriptome analysis reveals new insights in the starch biosynthesis of non-waxy and waxy broomcorn millet (Panicum miliaceum L.)
Qinghua Yang, Yuhao Yuan, Jiajia Liu, Mengru Han, Jing Li, Fei Jin and Baili Feng
International Journal of Biological Macromolecules
https://doi.org/10.1016/j.ijbiomac.2023.123155
Abstract
Broomcorn millet is a popular cereal with health benefits, and its grains are rich in starch. However, the differences in the pathway and key genes involved in starch biosynthesis of waxy and non-waxy broomcorn millet grain remain unclear. Therefore, the grain and starch physicochemical index and transcriptomic analyses of two genotypes of broomcorn millet were conducted at 3, 6, 9, 12, 15, 18, and 21 days after pollination. The phenotypic and physiological results indicated that the starch synthetic process of non-waxy and waxy broomcorn millet was significantly different. The amylose, amylopectin, and total starch contents of non-waxy broomcorn millet were 1.99, 4.74, and 6.73 mg/grain, while those of waxy broomcorn millet were 0.34, 5.94, and 6.28 mg/grain, respectively. The transcriptomic analysis revealed that 106 differentially expressed genes were identified, which were mainly enriched in the "amino sugar and nucleotide sugar metabolism", "pyruvate metabolism", "galactose metabolism", and "starch and sucrose metabolism" pathways. The WGCNA suggested that a total of 31 hub genes were correlated with starch biosynthesis. These findings provide a new approach to studying the starch synthesis in broomcorn millet.